Communications
Toolbox

For Use with MATLAB®

Computation
Visualization

Programming

User’s Guide ..,--;‘_\The MathWorks

Version 3



X Ly

How to Contact The MathWorks:

www . mathworks.com Web
comp.soft-sys.matlab Newsgroup
www . mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Communications Toolbox User’s Guide
© COPYRIGHT 19962006 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.



Revision History

April 1996

May 1997
September 2000
May 2001

July 2002

June 2004
October 2004
March 2005
September 2005
October 2005
March 2006

First printing
Second printing
Third printing
Online only
Fourth printing
Fifth printing
Online only
Online only
Online only
Reprint

Online only

Version 1.0

Revised for Version 1.1 (MATLAB 5.0)
Revised for Version 2.0 (Release 12)
Revised for Version 2.0.1 (Release 12.1)
Revised for Version 2.1 (Release 13)
Revised for Version 3.0 (Release 14)
Revised for Version 3.0.1 (Release 14SP1)
Revised for Version 3.1 (Release 14SP2)
Revised for Version 3.2 (Release 14SP3)
Version 3.0 (Notice updated)

Revised for Version 3.3 (Release 2006a)






Getting Started

1

What Is the Communications Toolbox? ............... 1-2
Expected Background .................. .. ... .. . ..., 1-2

Studying Components of a Communication System ... 14

Modulating a Random Signal ........................ 14
Plotting Signal Constellations ....................... 1-11
Pulse Shaping Using a Raised Cosine Filter ............ 1-14
Using a Convolutional Code ......................... 1-18
Simulating a Communication System ................ 1-23
Using BERTool to Run Simulations ................... 1-23

Varying Parameters and Managing a Set of Simulations .. 1-30

LearningMore ............. ... iiiiiiiiininnnnn.. 1-34
OnlineHelp ....... ... i, 1-34
Demos ... e e 1-34
The MathWorks Online ............................. 1-34

2|

White Gaussian Noise .............................. 2-2
Random Symbols ....................... ... ... ..... 2-3
Random Integers ............... ... ... .. . i, 2-4

Random Bit Error Patterns ......................... 2-5




vi

Performance Evaluation

3

Performance Results via Simulation ................ 3-2
Using Simulated Data to Compute Bit and Symbol Error
Rates ... .o 3-2
Example: Computing Error Rates .................... 3-3
Comparing Symbol Error Rate and Bit Error Rate ....... 3-3

Performance Results via the Semianalytic

Technique ............ ... . iiiiiiiiinnnnnn.. 3-5
When to Use the Semianalytic Technique .............. 3-5
Procedure for the Semianalytic Technique ............. 3-6
Example: Using the Semianalytic Technique ........... 3-7
Theoretical Performance Results ................... 3-9
Plotting Theoretical Error Rates ..................... 3-9
Comparing Theoretical and Empirical Error Rates ...... 3-10
ErrorRatePlots ................ ... ... ... ... ..... 3-13
Creating Error Rate Plots Using semilogy ............. 3-13
Curve Fitting for Error Rate Plots .................... 3-13
Example: Curve Fitting for an Error Rate Plot ......... 3-14
EyeDiagrams ............... ... iiiiiiiiiinnnnn.. 3-19
Example: Eye Diagrams ............... ..., 3-19
Scatter Plots ........ ... ... ... .. . i 3-22
Example: Scatter Plots ............ .. ... ... ... .... 3-22
Selected Bibliography for Performance Evaluation ... 3-25

BERTool: A Bit Error Rate Analysis GUI

4 |

Contents

Summary of Features .............................. 4-2



Opening BERTool ..................................

The BERTool Environment .........................
Components of BERTool ............................
Interaction Among BERTool Components ..............

Computing Theoretical BERs .......................
Example: Using the Theoretical Tab in BERTool ........
Available Sets of Theoretical BER Data ...............

Using the Semianalytic Technique to Compute BERs ..
Example: Using the Semianalytic Tab in BERTool .......

Procedure for Using the Semianalytic Tab in BERTool

Running MATLAB Simulations .....................
Example: Using a MATLAB Simulation with BERTool ...
Varying the Stopping Criteria .......................
Plotting Confidence Intervals ........................
Fitting BER PointstoaCurve .......................

Preparing Simulation Functions for Use with

BERTool ........ .. .. e
Requirements for Functions .........................
Template for a Simulation Function ..................

Example: Preparing a Simulation Function for Use with

BERTo0l ... e

Running Simulink Simulations .....................
Example: Using a Simulink Model with BERTool .......
Varying the Stopping Criteria .......................

Preparing Simulink Models for Use with BERTool .. ..
Requirements for Models ...........................
Tips for Preparing Models ..........................
Example: Preparing a Model for Use with BERTool . .....

Managing BERData ...............................
Exporting Data Sets or BERTool Sessions ..............
Importing Data Sets or BERTool Sessions .............
Managing Data in the Data Viewer ...................

4-4
4-4
4-5

4-7
4-8
4-10

4-14
4-15
4-17

4-20
4-20
4-23
4-24
4-26

4-27
4-27
4-28

4-31

4-35
4-36
4-39

4-41
4-41
4-41
4-44

4-50
4-50
4-54
4-55

vii



viii

Contents

Source Coding

5

QuantizingaSignal ................... ... ... ... ..., 5-2
Representing Partitions ............................ 5-2
Representing Codebooks ............................ 5-2
Scalar Quantization Example1 ...................... 5-3
Scalar Quantization Example 2 ...................... 5-3
Determining Which Interval Each Input IsIn .......... 5-4

Optimizing Quantization Parameters ................ 5-6
Example: Optimizing Quantization Parameters ......... 5-6

Differential Pulse Code Modulation ................. 5-7
DPCM Terminology .........couiiiiiiiineennnnnn.. 5-7
Representing Predictors ............................ 5-7
Example: DPCM Encoding and Decoding .............. 5-8

Optimizing DPCM Parameters ...................... 5-10
Example: Comparing Optimized and Nonoptimized DPCM

Parameters ......... ... . 5-10

Companding aSignal .............................. 5-12
Example: A p-Law Compander ...................... 5-12

Huffman Coding ............. ... ... . ... ... 5-14
Creating a Huffman Code Dictionary ................. 5-14
Example: Creating and Decoding a Huffman Code ...... 5-15

ArithmeticCoding ........... ... ... ... ... ... .... 5-16
Representing Arithmetic Coding Parameters ........... 5-16
Example: Creating and Decoding an Arithmetic Code .... 5-16

Selected Bibliography for Source Coding ............ 5-17



Error-Control Coding

6

7

BlockCoding ............. ... .. 6-2
Block Coding Features of the Toolbox ................. 6-3
Block Coding Terminology .......................... 6-4
Representing Words for Reed-Solomon Codes ........... 6-5
Parameters for Reed-Solomon Codes .................. 6-5
Creating and Decoding Reed-Solomon Codes ........... 6-7
Representing Words for BCH Codes  .................. 6-12
Parameters for BCHCodes .................. ... ..... 6-12
Creating and Decoding BCH Codes ................... 6-13
Representing Words for Linear Block Codes ............ 6-15
Parameters for Linear Block Codes ................... 6-18
Creating and Decoding Linear Block Codes ............ 6-23
Performing Other Block Code Tasks .................. 6-26
Selected Bibliography for Block Coding ................ 6-28

Convolutional Coding .............................. 6-30
Convolutional Coding Features of the Toolbox .......... 6-30
Polynomial Description of a Convolutional Encoder . ..... 6-30
Trellis Description of a Convolutional Encoder .......... 6-34
Creating and Decoding Convolutional Codes ........... 6-38
Examples of Convolutional Coding ................... 6-40
Selected Bibliography for Convolutional Coding ......... 6-43

Interleaving

Block Interleavers .............. ... ... ... ... ..., 7-2
Block Interleaving Features of the Toolbox ............. 7-2
Example: Block Interleavers ........................ 7-3

Convolutional Interleavers ......................... 7-5
Convolutional Interleaving Features of the Toolbox ...... 7-5
Example: Convolutional Interleavers ................. 7-6
Delays of Convolutional Interleavers .................. 7-9

ix



X

Contents

Selected Bibliography for Interleaving .............. 7-14

8

Modulation

Modulation Features of the Toolbox ................. 8-2
Baseband Versus Passband Simulation ................ 8-2
Modulation Terminology ........................... 8-3
Analog Modulation ................................ 8-4
Representing Analog Signals ........................ 8-4
Analog Modulation Example ........................ 8-5
Digital Modulation ................................. 8-7
Representing Digital Signals ........................ 8-7
Baseband Modulated Signals Defined ................. 8-8
Gray Encoding a Modulated Signal ................... 8-8
Examples of Digital Modulation and Demodulation ...... 8-12
Plotting Signal Constellations ....................... 8-15
Selected Bibliography for Modulation ............... 8-20

Special Filters

9

Noncausality and the Group Delay Parameter ....... 9-2
Example: Compensating for Group Delays When Analyzing
Data ... . 9-3
Designing Hilbert Transform Filters ................ 9-5
Example with Default Parameters ................... 9-5
Filtering with Raised Cosine Filters ................. 9-7
Sampling Rates .............. ... ... 9-7



Designing Filters Automatically ..................... 9-8

10|

Specifying Filters Using Input Arguments ............. 9-9
Controlling the Rolloff Factor ........................ 9-9
Controlling the Group Delay ........................ 9-10
Combining Two Square-Root Raised Cosine Filters ...... 9-11
Designing Raised Cosine Filters .................... 9-13
Sampling Rates .............. ... . ... 9-13
Example Designing a Square-Root Raised Cosine Filter .. 9-13
Other Options in Filter Design ....................... 9-14
Selected Bibliography for Special Filters ............ 9-15
Channels

Channel Features of the Toolbox .................... 10-2
AWGN Channel ......... ... ... ... . . . .. 10-3
Describing the Noise Level of an AWGN Channel ....... 10-3
Fading Channels .................................. 10-6
Overview of Fading Channels ....................... 10-6
Specifying Fading Channels ......................... 10-7
Configuring Channel Objects ........................ 10-12
Using Fading Channels ............................ 10-14
Examples Using Fading Channels .................... 10-15
Using the Channel Visualization Tool ................. 10-25
Binary Symmetric Channel ......................... 10-38
Example: Introducing Noise in a Convolutional Code .... 10-38
Selected Bibliography for Channels ................. 10-40

xi



xii

Contents

Equalizers

111

Equalizer Features of the Toolbox ................... 11-2
Overview of Adaptive Equalizer Classes ............. 11-3
Symbol-Spaced Equalizers .......................... 11-3
Fractionally Spaced Equalizers ...................... 11-5
Decision-Feedback Equalizers ....................... 11-6
Using Adaptive Equalizer Functions and Objects ... .. 11-8
Basic Procedure for Equalizing a Signal ............... 11-8
Example Illustrating the Basic Procedure .............. 11-8
Learning More About Adaptive Equalizer Functions ..... 11-9
Specifying an Adaptive Algorithm ................... 11-10
Choosing an Adaptive Algorithm ..................... 11-10
Indicating a Choice of Adaptive Algorithm ............. 11-11
Accessing Properties of an Adaptive Algorithm ......... 11-12
Specifying an Adaptive Equalizer ................... 11-13
Defining an Equalizer Object ........................ 11-13
Accessing Properties of an Equalizer .................. 11-14
Using Adaptive Equalizers ......................... 11-17
Equalizing Using a Training Sequence ................ 11-17
Equalizing in Decision-Directed Mode ................. 11-19
Delays from Equalization ........................... 11-21
Equalizing UsingaLoop ........... ... ... 11-22
Using MLSE Equalizers ............................ 11-28
Equalizing a Vector Signal .......................... 11-28
Equalizing in Continuous Operation Mode ............. 11-29
Using a Preamble or Postamble ...................... 11-33
Selected Bibliography for Equalizers ................ 11-35



Galois Field Computations

121

Galois Field Terminology ........................... 12-3
Representing Elements of Galois Fields .............. 12-4
Creatinga Galois Array ...........cviiiiieiinnnnn.. 124
Example: Creating Galois Field Variables ............. 12-5
Example: Representing Elements of GF(8) ............. 12-6
How Integers Correspond to Galois Field Elements ...... 12-7
Example: Representing a Primitive Element ........... 12-8
Primitive Polynomials and Element Representations .... 12-8
Arithmeticin GaloisFields ......................... 12-13
Example: Addition and Subtraction .................. 12-14
Example: Multiplication ............................ 12-15
Example: Division ........... ..., 12-16
Example: Exponentiation ........................... 12-17
Example: Elementwise Logarithm ................... 12-18
Logical Operations in Galois Fields ................. 12-19
Testing for Equality .............. ... ... .. ... 12-19
Testing for Nonzero Values .......................... 12-20
Matrix Manipulation in Galois Fields ................ 12-21
Basic Manipulations of Galois Arrays ................. 12-21
Basic Information About Galois Arrays ................ 12-22
Linear Algebra in Galois Fields ..................... 12-23
Inverting Matrices and Computing Determinants ....... 12-23
ComputingRanks ............. ... .. ... i ... 12-24
Factoring Square Matrices .......................... 12-24
Solving Linear Equations ........................... 12-25
Signal Processing Operations in Galois Fields ........ 12-27
Filtering .. ... . i e 12-27
Convolution ............. .t iiiiiinnnennn.. 12-28
Discrete Fourier Transform ......................... 12-28
Polynomials over Galois Fields ..................... 12-30

xiii



Xiv

Addition and Subtraction of Polynomials .............. 12-30

Multiplication and Division of Polynomials ............. 12-30
Evaluating Polynomials ............................ 12-31
Roots of Polynomials ..................... ... .. ..... 12-32
Roots of Binary Polynomials ......................... 12-32
Minimal Polynomials ............. .. ... ... ... .... 12-33
Manipulating Galois Variables ...................... 12-35
Determining Whether a Variable Is a Galois Array ...... 12-35
Extracting Information from a Galois Array ............ 12-35
Speed and Nondefault Primitive Polynomials ........ 12-38
Selected Bibliography for Galois Fields .............. 12-40

Functions — By Category

13

Contents

Signal Sources ............ ... . i 13-2
Performance Evaluation ........................... 13-2
Source Coding ............ ... i, 13-3
Error-Control Coding .............................. 13-4
Interleaving/Deinterleaving ........................ 13-5
Analog Modulation/Demodulation ................... 13-6
Digital Modulation/Demodulation ................... 13-6
Pulse Shaping ............. ... .. . .. 13-7
Special Filters ............ ... ... ... .. ... 13-7



Lower-Level Functions for Special Filters .............. 13-8

Channels ....... ... . i 13-8
Equalizers .......... ... .. .. . i 13-8
Galois Field Computations ......................... 13-9

Computations in Galois Fields of Odd Characteristic .. 13-11
Utilities ......... i i e 13-13

Graphical User Interface ........................... 13-14

Functions — Alphabetical List

14

Galois Fields of Odd Characteristic

Al

Galois Field Terminology ........................... A-3
Representing Elements of Galois Fields .............. A4
Exponential Format ............................... A4
Polynomial Format ................. ... ... ... ..... A-5
List of All Elements of a Galois Field ................. A-5
Nonuniqueness of Representations ................... A-7
Default Primitive Polynomials ...................... A-8
Converting and Simplifying Element Formats ........ A-9
Converting to Simplest Polynomial Format ............ A-9
Example: Generating a List of Galois Field Elements .... A-11
Converting to Simplest Exponential Format ............ A-11

XV



xvi

Contents

Arithmeticin GaloisFields ......................... A-13

Bl

Arithmeticin Prime Fields .......................... A-13
Arithmetic in Extension Fields ...................... A-13
Polynomials over Prime Fields ...................... A-16
Cosmetic Changes of Polynomials .................... A-16
Polynomial Arithmetic ........... ... ... ... ... .... A-17
Characterization of Polynomials ..................... A-17
Roots of Polynomials ..................... ... .. ..... A-18
Other Galois Field Functions ....................... A-21
Selected Bibliography for Galois Fields .............. A-22
Examples

Modulation .......... ... ... .. . . . . B-2
Special Filters ............ ... ... ... .. ... B-2
Convolutional Coding .............................. B-2
Simulating Communication Systems ................ B-2
Performance Evaluation ........................... B-3
Source Coding ............ ... i, B-3
BlockCoding ........... ... ... .. B-3
Interleaving ........ ... ... ... .. . . i B-4
Channels ....... ... . . it B-4



Equalizers .......... ... .. .. . . i B-4

Galois Field Computations ......................... B-4

Index

xvii



xviii Contents



Getting Started

This chapter first provides a brief overview of the Communications
Toolbox and then uses several examples to help you get started using the
toolbox. This chapter assumes very little about your prior knowledge of
MATLAB®, although it still assumes that you have a basic knowledge about
communications subject matter.

What Is the Communications The toolbox and the kinds of tasks
Toolbox? (p. 1-2) it can perform

Studying Components of a Using toolbox functions to create
Communication System (p. 1-4) communications building blocks
Simulating a Communication Assembling components to form a
System (p. 1-23) simulation

Learning More (p. 1-34) Other resources for learning about

the Communications Toolbox



1 Getting Started

1-2

What Is the Communications Toolbox?

The Communications Toolbox extends the MATLAB technical computing
environment with functions, plots, and a graphical user interface for
exploring, designing, analyzing, and simulating algorithms for the physical
layer of communication systems. The toolbox helps you create algorithms for
commercial and defense wireless or wireline systems.

The key features of the toolbox are

® Functions for designing the physical layer of communications links,
including source coding, channel coding, interleaving, modulation, channel
models, and equalization

® Plots such as eye diagrams and constellations for visualizing
communications signals

e Graphical user interface for comparing the bit error rate of your system
with a wide variety of proven analytical results

® Galois field data type for building communications algorithms

Expected Background

This guide assumes that you already have background knowledge in the
subject of communications. If you do not yet have this background, then you
can acquire it using a standard communications text or the books listed in one
of this guide’s sections titled “Selected Bibliography for... .”

For New Users

The discussion and examples in this chapter are aimed at new users.
Continue reading this chapter and try out the examples. Then read those
subsequent chapters that address the specific areas that concern you. When
you find out which functions you want to use, refer to the online reference
pages that describe those functions.

For Experienced Users

The online reference descriptions are probably the most relevant parts of this
guide for you. Each reference description includes the function’s syntax as
well as a complete explanation of its options and operation. Many reference



What Is the Communications Toolbox?2

descriptions also include examples, a description of the function’s algorithm,
and references to additional reading material.

You might also want to browse through nonreference parts of this
documentation set, depending on your interests or needs.

1-3



1 Getting Started

Studying Components of a Communication System

The Communications Toolbox implements a variety of communications-related
tasks. Many of the functions in the toolbox perform computations associated
with a particular component of a communication system, such as a
demodulator or equalizer. Other functions are designed for visualization or
analysis.

While the later chapters of this document discuss various toolbox features in
more depth, this section builds an example step by step to give you a first look
at the toolbox. This section also shows how tools in the Communications
Toolbox build upon the computational and visualization tools in the underlying
MATLAB environment. The topics are as follows:

® “Modulating a Random Signal” on page 1-4

® “Plotting Signal Constellations” on page 1-11

e “Pulse Shaping Using a Raised Cosine Filter” on page 1-14

e “Using a Convolutional Code” on page 1-18

Modulating a Random Signal

This first example addresses the following problem:

Problem Process a binary data stream using a communication system that
consists of a baseband modulator, channel, and demodulator. Compute the
system’s bit error rate (BER). Also, display the transmitted and received
signals in a scatter plot.

The table below indicates the key tasks in solving the problem, along
with relevant functions from the Communications Toolbox. The solution
arbitrarily chooses baseband 16-QAM (quadrature amplitude modulation)
as the modulation scheme and AWGN (additive white Gaussian noise) as
the channel model.

14



Studying Components of a Communication System

Task Function
Generate a random binary data stream randint
Modulate using 16-QAM gammod

Add white Gaussian noise awgn

Create a scatter plot scatterplot
Demodulate using 16-QAM gamdemod
Compute the system’s BER biterr

Solution of Problem
The discussion below describes each step in more detail, introducing M-code

along the way. To view all the code in one editor window, enter the following
in the MATLAB Command Window.

edit commdoc_mod

1. Generate a Random Binary Data Stream. The conventional format
for representing a signal in MATLAB is a vector or matrix. This example uses
the randint function to create a column vector that lists the successive values
of a binary data stream. The length of the binary data stream (that is, the
number of rows in the column vector) is arbitrarily set to 30,000.

Note The sampling times associated with the bits do not appear explicitly,
and MATLAB has no inherent notion of time. For the purpose of this example,
knowing only the values in the data stream is enough to solve the problem.

The code below also creates a stem plot of a portion of the data stream,
showing the binary values. Your plot might look different because the example
uses random numbers. Notice the use of the colon (:) operator in MATLAB
to select a portion of the vector. For more information about this syntax, see
“The Colon Operator” in the MATLAB documentation set.

%% Setup
% Define parameters.

1-5



1 Getting Started

1-6

Size of signal constellation
); % Number of bits per symbol
n = 3e4; % Number of bits to process
nsamp = 1; % Oversampling rate

=
I

=
o
(@]

N

%% Signal Source
reate a binary data stream as a column vector.
randint(n,1); % Random binary data stream

o°
n o

% Plot first 40 bits in a stem plot.
stem(x(1:40), 'filled');

title('Random Bits');

xlabel('Bit Index'); ylabel('Binary Value');

[ rigue RI=TE
File Edit Wiew Insert Tools Desktop Window Help N
Random Bits
1 (e LB O L Lo L

08r
5 06}
o
>
=
=
T 04r
02r
0 - Nl e o &
0 & 10 15 20 25 30 35 40
Biit Index




Studying Components of a Communication System

2. Prepare to Modulate. The gammod function implements a 16-QAM
modulator. However, it expects to receive integers between 0 and 15 rather
than 4-tuples of bits. Therefore, you must preprocess the binary data stream x
before invoking gammod. In particular, you arrange each 4-tuple of values from
x across a row of a matrix, using the reshape function in MATLAB, and then
apply the bi2de function to convert each 4-tuple to a corresponding integer.
(The .' characters after the reshape command form the unconjugated array
transpose operator in MATLAB. For more information about this and the
similar ' operator, see “Reshaping a Matrix” in the MATLAB documentation
set.)

%% Bit-to-Symbol Mapping
% Convert the bits in x into k-bit symbols.
xsym = bi2de(reshape(x,k,length(x)/k)."', " 'left-msb');

%% Stem Plot of Symbols

% Plot first 10 symbols in a stem plot.

figure; % Create new figure window.
stem(xsym(1:10));

title('Random Symbols');

xlabel('Symbol Index'); ylabel('Integer Value');

Drgmez L=
File Edit Wiew Insert Tools Desktop Window Help N
Random Symbaols
15+ o] o]
o]
o]
o]
o]

10+
a
=
i
>
o
f=2]
et}
z

5t

D T

0 2 4 B 8 10

Symbol Index




1 Getting Started

1-8

3. Modulate Using 16-QAM. Having defined xsym as a column vector
containing integers between 0 and 15, you can use gammod to modulate xsym
using the baseband representation. Recall that M is 16, the alphabet size.

%% Modulation
% Modulate using 16-QAM.
y = gammod (xsym,M) ;

The result is a complex column vector whose values are in the 16-point
QAM signal constellation. A later step in this example will show what the
constellation looks like.

To learn more about modulation functions, see Chapter 8, “Modulation”. Also,
note that the gammod function does not apply any pulse shaping. To extend
this example to use pulse shaping, see “Pulse Shaping Using a Raised Cosine
Filter” on page 1-14. For an example that uses rectangular pulse shaping
with PSK modulation, see basicsimdemo.

4. Add White Gaussian Noise. Applying the awgn function to the
modulated signal adds white Gaussian noise to it. The ratio of bit energy to
noise power spectral density, E,/N, is arbitrarily set at 10 dB.

The expression to convert this value to the corresponding signal-to-noise ratio
(SNR) involves k, the number of bits per symbol (which is 4 for 16-QAM), and
nsamp, the oversampling factor (which is 1 in this example). The factor k is
used to convert E,/N; to an equivalent E /N, which is the ratio of symbol
energy to noise power spectral density. The factor nsamp is used to convert
EJ/N, in the symbol rate bandwidth to an SNR in the sampling bandwidth.

Note The definitions of ytx and yrx and the nsamp term in the definition of
snr are not significant in this example so far, but will make it easier to extend
the example later to use pulse shaping.

%% Transmitted Signal
ytx = y;

%% Channel
% Send signal over an AWGN channel.



Studying Components of a Communication System

EbNo = 10; % In dB
snr = EbNo + 10*1og10(k) - 10*log10(nsamp);
ynoisy = awgn(ytx,snr, 'measured');

%% Received Signal
yrx = ynoisy;

To learn more about awgn and other channel functions, see Chapter 10,
“Channels”

5. Create a Scatter Plot. Applying the scatterplot function to the
transmitted and received signals shows what the signal constellation looks
like and how the noise distorts the signal. In the plot, the horizontal axis is
the in-phase component of the signal and the vertical axis is the quadrature
component. The code below also uses the title, legend, and axis functions
in MATLAB to customize the plot.

%% Scatter Plot

Create scatter plot of noisy signal and transmitted
% signal on the same axes.

h = scatterplot(yrx(1:nsamp*5e3),nsamp,0,'g."');

hold on;

scatterplot(ytx(1:5e3),1,0,'k*',h);

title('Received Signal');

legend('Received Signal', 'Signal Constellation');
axis([-5 5 -5 5]); % Set axis ranges.

hold off;

o°

1-9



1 Getting Started

1-10

2\ Figure 3: Scatter Plok 10l =|

File Edit Wiew Insert Tools Desktop Window Help

Received Signal

5
+  Received Signal

4 Signal Constellation

CQuadrature
(o]

In-Phase

To learn more about scatterplot, see “Scatter Plots” on page 3-22.

6. Demodulate Using 16-QAM. Applying the gamdemod function to the
received signal demodulates it. The result is a column vector containing
integers between 0 and 15.

%% Demodulation
% Demodulate signal using 16-QAM.
zsym = gamdemod (yrx,M);

7. Convert the Integer-Valued Signal to a Binary Signal. The previous
step produced zsym, a vector of integers. To obtain an equivalent binary signal,
use the de2bi function to convert each integer to a corresponding binary
4-tuple along a row of a matrix. Then use the reshape function to arrange all
the bits in a single column vector rather than a four-column matrix.

%% Symbol-to-Bit Mapping

Undo the bit-to-symbol mapping performed earlier.

= de2bi(zsym, 'left-msb'); % Convert integers to bits.
% Convert z from a matrix to a vector.

= reshape(z.',prod(size(z)),1);



Studying Components of a Communication System

8. Compute the System’s BER. Applying the biterr function to the
original binary vector and to the binary vector from the demodulation step
above yields the number of bit errors and the bit error rate.

o°

% BER Computation

% Compare x and z to obtain the number of errors and
% the bit error rate.
[number_of_errors,bit_error_rate] = biterr(x,z)

The statistics appear in the MATLAB Command Window. Your results might
vary because the example uses random numbers.

number_of_errors =

71

bit_error_rate =
0.0024

To learn more about biterr, see “Performance Results via Simulation” on
page 3-2.

Plotting Signal Constellations

The example in the previous section created a scatter plot from the modulated
signal. Although the plot showed the points in the QAM constellation, the plot
did not indicate which integers between 0 and 15 the modulator mapped to a
given constellation point. This section addresses the following problem:

Problem Plot a 16-QAM signal constellation with annotations that indicate
the mapping from integers to constellation points.

The solution uses the scatterplot function to create the plot and the text
function in MATLAB to create the annotations.

1-11



1 Getting Started

1-12

Solution of Problem
To view a completed M-file for this example, enter edit commdoc_const in
the MATLAB Command Window.

1. Find All Points in the 16-QAM Signal Constellation. Applying the
gammod function to a vector of integers between 0 and 15 results in an output
vector containing all points in the 16-QAM signal constellation.

M = 16; % Number of points in constellation
intg = [0:M-1]."'; % Vector of integers between 0 and M-1
pt = gammod(intg,M); % Vector of all points in constellation

2. Plot the Signal Constellation. The scatterplot function plots the
points in pt.

% Plot the constellation.
scatterplot(pt);

. Figure 1: Scatter Plot =10l ]

File Edit Wiew Insert Tools Desktop Window Help

Scatter plot

CQuadrature
(o]




Studying Components of a Communication System

3. Annotate the Plot to Indicate the Mapping. To annotate the plot to
show the relationship between intg and pt, use the text function to place

a number in the plot beside each constellation point. The coordinates of the
annotation are near the real and imaginary parts of the constellation point,
but slightly offset to avoid overlap. The text of the annotation comes from the
binary representation of intg. (The dec2bin function in MATLAB produces a
string of digit characters, while the de2bi function used in the last section
produces a vector of numbers.)

% Include text annotations that number the points.
text(real(pt)+0.1,imag(pt),dec2bin(intg));
axis([-4 4 -4 4]); % Change axis so all labels fit in plot.

. Figure 1: Scatter Plot =10l ]

File Edit Wiew Insert Tools Desktop Window Help

Scatter plot

4

3 0000 +0100 +1000 +1100H

1 0001 <0101 «1001 +110714

CQuadrature

-1 +0010 «0110 «1010 +111H

-3 0011 <0111 «1011 11114

-4 -2 0 2 4
In-Phase

Binary-Coded 16-QAM Signal Constellation

Examining the Plot

In the plot above, notice that 0001 and 0010 correspond to adjacent
constellation points on the left side of the diagram. Because these binary
representations differ by two bits, the adjacency indicates that gammod did
not use a Gray-coded signal constellation. (That is, if it were a Gray-coded
signal constellation, then the annotations for each pair of adjacent points
would differ by one bit.)

1-13



1 Getting Started

By contrast, the constellation below is one example of a Gray-coded 16-QAM
signal constellation.

. Figure 2: Scatter Plokt =10l ]

File Edit Wiew Insert Tools Desktop Window Help

Scatter plot
4

3 0000 +0100 «1100 +1000H

1 0001 <0101 1101 +10014

CQuadrature
(o]

-1 0011 <0111 1111 +10114

-3 +0010 «0110 «1110 +1010H

-4 -2 0 2 4
In-Phase

Gray-Coded 16-QAM Signal Constellation

The only difference, compared to the previous example, is that you pass in
‘gray' as the symbol order argument to the gammod function.

%% Modified Plot, With Gray Coding

M = 16; % Number of points in constellation

intg = [0:M-1].";

pt = gammod(intg,M,[], 'gray'); % Vector of all points in constellation

scatterplot(pt); % Plot the constellation.
% Include text annotations that number the points.

text(real(pt)+0.1,imag(pt),dec2bin(intg));
axis([-4 4 -4 4]); % Change axis so all labels fit in plot.

Pulse Shaping Using a Raised Cosine Filter

This section further extends the example by addressing the following problem:

1-14



Studying Components of a Communication System

Problem Modify the Gray-coded modulation example so that it uses a pair
of square root raised cosine filters to perform pulse shaping and matched
filtering at the transmitter and receiver, respectively.

The solution uses the rcosine function to design the square root raised cosine
filter and the rcosflt function to filter the signals. Alternatively, you can use
the rcosflt function to perform both tasks in one command; see “Filtering
with Raised Cosine Filters” on page 9-7 or the rcosdemo demonstration for
more details.

Solution of Problem
This solution modifies the code from commdoc_gray.m. To view the original

code in an editor window, enter the following command in the MATLAB
Command Window.

edit commdoc_gray

To view a completed M-file for this example, enter edit commdoc_rrc in the
MATLAB Command Window.

1. Define Filter-Related Parameters. In the Setup section of the example,
replace the definition of the oversampling rate, nsamp, with the following.

nsamp = 4; % Oversampling rate

Also, define other key parameters related to the filter by inserting the
following after the Modulation section of the example and before the
Transmitted signal section.

%% Filter Definition

% Define filter-related parameters.

filtorder = 40; % Filter order

delay = filtorder/(nsamp*2); % Group delay (# of input samples)
rolloff = 0.25; % Rolloff factor of filter

2. Create a Square Root Raised Cosine Filter. To design the filter and

plot its impulse response, insert the following commands after the commands
you added in the previous step.

1-15



1 Getting Started

% Create a square root raised cosine filter.
rrcfilter = rcosine(1,nsamp, 'fir/sqrt',rolloff,delay);

% Plot impulse response.
figure; impz(rrcfilter,1);

[Jrgwes -0l

File Edit Wiew Insert Tools Desktop Window Help

Impulse Response

0.6

*
05t

LR J
0.4}
03t

0.2t

Armnplitude

0.1 R
ologete, otTE T T LAL AT
i’ 7] & (& & [® [T

0.1 1 1 1 1 1
a 5 10 15 20 25 30 35 40
n (sarmples)

3. Filter the Modulated Signal. To filter the modulated signal, replace the
Transmitted Signal section with following.

%% Transmitted Signal
% Upsample and apply square root raised cosine filter.
ytx = rcosflt(y,1,nsamp, 'filter',rrcfilter);

% Create eye diagram for part of filtered signal.
eyediagram(ytx(1:2000),nsamp*2);

The rcosflt command internally upsamples the modulated signal, y, by a
factor of nsamp, pads the upsampled signal with zeros at the end to flush the
filter at the end of the filtering operation, and then applies the filter.

The eyediagram command creates an eye diagram for part of the filtered
noiseless signal. This diagram illustrates the effect of the pulse shaping. Note
that the signal shows significant intersymbol interference (ISI) because the
filter is a square root raised cosine filter, not a full raised cosine filter.

1-16



Studying Components of a Communication System

. Figure 4: Eye Diagram = |EI|1|
File Edit Wiew Insert Tools Desktop Window Help N

Eye Diagram for In-Phase Signal

Armnplitude

Time
Eye Diagram for Quadrature Signal

Armnplitude

To learn more about eyediagram, see “Eye Diagrams” on page 3-19.

4. Filter the Received Signal. To filter the received signal, replace the
Received Signal section with the following.

%% Received Signal

% Filter received signal using square root raised cosine filter.
yrx = rcosflt(ynoisy,1,nsamp,'Fs/filter',rrcfilter);

yrx downsample(yrx,nsamp); % Downsample.

yrx = yrx(2*delay+1:end-2*delay); % Account for delay.

These commands apply the same square root raised cosine filter that the
transmitter used earlier, and then downsample the result by a factor of nsamp.

The last command removes the first 2*delay symbols and the last 2*delay
symbols in the downsampled signal because they represent the cumulative
delay of the two filtering operations. Now yrx, which is the input to the
demodulator, and y, which is the output from the modulator, have the same
vector size. In the part of the example that computes the bit error rate, it is
important to compare two vectors that have the same size.

1-17



1 Getting Started

1-18

5.

Adjust the Scatter Plot. For variety in this example, make the scatter

plot show the received signal before and after the filtering operation. To do
this, replace the Scatter Plot section of the example with the following.

%% Scatter Plot

% Create scatter plot of received signal before and

% after filtering.

h = scatterplot(sqrt(nsamp)*ynoisy(1:nsamp*5e3),nsamp,0,'qg.");
hold on;

scatterplot(yrx(1:5e3),1,0, 'kx',h);

title('Received Signal, Before and After Filtering');
legend('Before Filtering', 'After Filtering');

axis([-5 5 -5 5]); % Set axis ranges.

Notice that the first scatterplot command scales ynoisy by sqrt(nsamp)
when plotting. This is because the filtering operation changes the signal’s
power.

« Figure 5: Scatter Plot =1al x|

File Edit Wiew Insert Tools Desktop Window Help

CQuadrature

Received Signal, Before and After Filtering

Befare Filtering
e Adter Filtering

Using a Convolutional Code
This section further extends the example by addressing the following problem:



Studying Components of a Communication System

Problem Modify the previous example so that it includes convolutional
coding and decoding, given the constraint lengths and generator polynomials
of the convolutional code.

The solution uses the convenc and vitdec functions to perform encoding
and decoding, respectively. It also uses the poly2trellis function to define
a trellis that represents a convolutional encoder. To learn more about these
functions, see “Convolutional Coding” on page 6-30.

See also vitsimdemo for an example of convolutional coding and decoding.

Solution of Problem

This solution modifies the code from “Pulse Shaping Using a Raised Cosine
Filter” on page 1-14. To view the original code in an editor window, enter the
following command in the MATLAB Command Window.

edit commdoc_rrc

To view a completed M-file for this example, enter edit commdoc_code in the
MATLAB Command Window.

1. Increase the Number of Symbols. Convolutional coding at this value
of EbNo reduces the BER markedly. As a result, accumulating enough errors
to compute a reliable BER requires you to process more symbols. In the Setup
section, replace the definition of the number of bits, n, with the following.

n = 5e5; % Number of bits to process

Note The larger number of bits in this example causes it to take a noticeably
longer time to run compared to the examples in previous sections.

2. Encode the Binary Data. To encode the binary data before mapping it to
integers for modulation, insert the following after the Signal Source section
of the example and before the Bit-to-Symbol Mapping section.

1-19



1 Getting Started

1-20

%% Encoder

% Define a convolutional coding trellis and use it

% to encode the binary data.

t = poly2trellis([5 4],[23 35 0; 0 5 13]); % Trellis
code = convenc(x,t); % Encode.

coderate = 2/3;

The poly2trellis command defines the trellis that represents the
convolutional code that convenc uses for encoding the binary vector, x. The
two input arguments in the poly2trellis command indicate the constraint
length and generator polynomials, respectively, of the code. A diagram
showing this encoder is in “Example: A Rate-2/3 Feedforward Encoder” on
page 6-40.

3. Apply the Bit-to-Symbol Mapping to the Encoded Signal. The
bit-to-symbol mapping must apply to the encoded signal, code, not the original
uncoded data. Replace the first definition of xsym (within the Bit-to-Symbol
Mapping section) with the following.

% B. Do ordinary binary-to-decimal mapping.
xsym = bi2de(reshape(code,k,length(code)/k)."', " 'left-msb');

Recall that k is 4, the number of bits per symbol in 16-QAM.

4. Account for Code Rate When Defining SNR. Converting from E /N, to
the signal-to-noise ratio requires you to account for the number of information
bits per symbol. Previously, each symbol corresponded to k bits. Now, each
symbol corresponds to k*coderate information bits. More concretely, three
symbols correspond to 12 coded bits in 16-QAM, which correspond to 8
uncoded (information) bits, so the ratio of symbols to information bits is 8/3

= 4*(2/3) = k*coderate.

Therefore, change the definition of snr (within the Channel section) to the
following.

snr = EbNo + 10*log10(k*coderate)-10*1log10(nsamp);



Studying Components of a Communication System

5. Decode the Convolutional Code. To decode the convolutional
code before computing the error rate, insert the following after the entire
Symbol-to-Bit Mapping section and just before the BER Computation
section.

%% Decoder

% Decode the convolutional code.

tb = 16; % Traceback length for decoding

z = vitdec(z,t,tb,'cont','hard'); % Decode.

The syntax for the vitdec function instructs it to use hard decisions. The
‘cont' argument instructs it to use a mode designed for maintaining
continuity when you invoke the function repeatedly (as in a loop). Although
this example does not use a loop, the 'cont' mode is used for the purpose of
illustrating how to compensate for the delay in this decoding operation. The
delay is discussed further in “More About Delays” on page 1-22.

6. Account for Delay When Computing BER. The continuous operation
mode of the Viterbi decoder incurs a delay whose duration in bits equals the
traceback length, tb, times the number of input streams to the encoder. For
this rate 2/3 code, the encoder has two input streams, so the delay is 2*tb bits.

As a result, the first 2*tb bits in the decoded vector, z, are just zeros. When
computing the bit error rate, you should ignore the first 2*tb bits in z and the
last 2*tb bits in the original vector, x. If you do not compensate for the delay,
then the BER computation is meaningless because it compares two vectors
that do not truly correspond to each other.

Therefore, replace the BER Computation section with the following.

o°

% BER Computation

% Compare x and z to obtain the number of errors and

% the bit error rate. Take the decoding delay into account.
decdelay = 2*tb; % Decoder delay, in bits
[number_of_errors,bit_error_rate] = ...
biterr(x(1:end-decdelay),z(decdelay+1:end))

1-21



1 Getting Started

1-22

More About Delays

The decoding operation in this example incurs a delay, which means that
the output of the decoder lags the input. Timing information does not
appear explicitly in the example, and the duration of the delay depends

on the specific operations being performed. Delays occur in various
communications-related operations, including convolutional decoding,
convolutional interleaving/deinterleaving, equalization, and filtering. To find
out the duration of the delay caused by specific functions or operations, refer
to the specific documentation for those functions or operations. For example:

The vitdec reference page
“Delays of Convolutional Interleavers” on page 7-9
“Delays from Equalization” on page 11-21

“Example: Compensating for Group Delays When Analyzing Data” on
page 9-3

“Fading Channels” on page 10-6

The “Effect of Delays on Recovery of Convolutionally Interleaved Data” on
page 7-10 discussion also includes two typical ways to compensate for delays.



Simulating a Communication System

Simulating a Communication System

The examples so far have performed tasks associated with various components
of a communication system. In some cases, you might need to create a more
sophisticated simulation that uses one or more of these techniques:

* Looping over a set of values of a specific parameter, such as E,/N,, the
alphabet size, or the oversampling rate, so you can see the parameter’s
effect on the system

® Processing data in multiple smaller sets rather than in one large set, to
reduce the memory requirement

® Dynamically determining how much data to process to get reliable results,
instead of trying to guess at the beginning

This section discusses these issues and provides examples of constructs that
you can use in your simulations of communication systems. The topics are as
follows:

e “Using BERTool to Run Simulations” on page 1-23

® “Varying Parameters and Managing a Set of Simulations” on page 1-30

Using BERTool to Run Simulations

The Communications Toolbox includes a graphical user interface (GUI) called
BERTool that is designed to solve problems like the following:

Problem Modify the modulation example in so that it computes the BER for
integer values of EbNo between 0 and 7. Plot the BER as a function of EbNo
using a logarithmic scale for the vertical axis.

BERTool solves the problem by managing a series of simulations with different
values of E, /N, collecting the results, and creating a plot. You provide the core
of the simulation, which in this case is a minor modification of the example in .

This section introduces BERTool as well as some simulation-related issues, in
these topics:

1-23



1 Getting Started

e “Solution of Problem” on page 1-24
® “Comparing with Theoretical Results” on page 1-27
e “More About the Simulation Structure” on page 1-29

However, this section is not a comprehensive description of BERTool; for
more information about BERTool, see Chapter 4, “BERTool: A Bit Error
Rate Analysis GUI”.

Solution of Problem

This solution uses code from commdoc_gray.m as well as code from a template
file that is tailored for use with BERTool. To view the original code in an
editor window, enter these commands in the MATLAB Command Window.

edit commdoc_gray
edit bertooltemplate

To view a completed M-file for this example, enter edit commdoc_bertool
in the MATLAB Command Window.

1. Save Template in Your Own Directory. Navigate to a directory
where you want to save your own files. Save the BERTool template
(bertooltemplate) under the filename my commdoc bertool to avoid
overwriting the original template.

Also, change the first line of my commdoc_bertool, which is the function
declaration, to use the new filename.

function [ber, numBits] = my_commdoc_bertool(EbNo, maxNumErrs, maxNumBits)

2. Copy Setup Code Into Template. In the my_commdoc_bertool file,

replace
% --- Set up parameters. ---
% --- INSERT YOUR CODE HERE.

with the following setup code adapted from the example in commdoc_gray.m.

% Setup
% Define parameters.

1-24



Simulating a Communication System

M = 16; % Size of signal constellation
k = 1log2(M); % Number of bits per symbol
n = 1000; % Number of bits to process

nsamp = 1; % Oversampling rate

To save time in the simulation, the code above changes the value of n from its
original value. At small values of EbNo, it is not necessary to process tens of
thousands of symbols to compute an accurate BER; at large values of EbNo,
the loop structure in the template file (described later) causes the simulation
to include at least 100 errors even if it must iterate several times through the
loop to accumulate that many errors.

3. Copy Simulation Code Into Template. In the my_commdoc_bertool
file, replace

o°

--- Proceed with simulation.
--- Be sure to update totErr and numBits.
% --- INSERT YOUR CODE HERE.

o°

with the rest of the code (that is, the code following the Setup section) from
the example in commdoc_gray.m.

Also, type a semicolon at the end of the last line of the pasted code (the biterr
command) to suppress screen output when BERTool runs the simulation.

6. Update numBits and totErr. After the pasted code from the last step
and before the end statement from the template, insert the following code.

%% Update totErr and numBits.
totErr = totErr + number_of_errors;
numBits = numBits + n;

These commands enable the function to keep track of the number of bits
processed and the number of errors detected.

5. Suppress Earlier Plots. Running multiple iterations would result in a
large number of plots, which this example suppresses for simplicity. In the
my_commdoc_bertool file, remove the lines of code that use these functions:
stem, title, xlabel, ylabel, figure, scatterplot, hold, legend, and axis.

1-25



Getting Started

1-26

6. Omit Direct Assignment of EbNo. When BERTool invokes a simulation
function, it specifies a value of EbNo. The my commdoc_bertool function must
not directly assign EbNo. Therefore, remove or comment out the line that you
pasted into my _commdoc_bertool (within the Channel section) that assigns
EbNo directly.

% EbNo = 10;

o°

In dB % COMMENT OUT FOR BERTOOL

7. Save Simulation Function. The simulation function,
my_commdoc_bertool, is complete. Save the file so that BERTool can use it.

8. Open BERTool and Enter Parameters. To open BERTool, enter

bertool

in the MATLAB Command Window. Then click the Monte Carlo tab and
enter parameters as shown below.

Theoreﬁcall Semianalytic  Mante Carlo |

E M, range: |20 dE

Simulation M-file or model: Imy_c:ommdoc:_bertool.m Browvse... |
BER: variable name: I

Sirmulation limits:

Mumber of errors: |1 uli}

or
Mumber of bits: 1ed

These parameters tell BERTool to run your simulation function,
my_commdoc_bertool, for each value of EbNo in the vector 2: 10 (that is, the
vector [2 3 4 5 6 7 8 9 10]). Each time the simulation runs, it continues



Simulating a Communication System

processing data until it detects 100 bit errors or processes a total of 1e8 bits,
whichever occurs first.

9. Use BERTool to Simulate and Plot. Click the Run button on BERTool.
BERTool begins the series of simulations and eventually reports the results
to you in a plot like the one below.

-0l
-

File Edit Tools ‘Window

EEERi =]

<il
10 L —— I T

_____________ | S Epupp—
+  simulationd

__________________

_________

To compare these BER results with theoretical results, leave BERTool open
and use the procedure below.

Comparing with Theoretical Results

To check whether the results from the solution above are correct, use BERTool
again. This time, use its Theoretical panel to plot theoretical BER results in
the same window as the simulation results from before. Follow this procedure:

1 In the BERTool GUI, click the Theoretical tab and enter parameters as
shown below.

1-27



1 Getting Started

Thearetical | Semianalytic I Monte Carlo I

E, My ranges 1210 dE

Channel type: I ANGH T l
Modulstion type: I M =~ l
I 16 = l

Moacdulation order:

The parameters tell BERTool to compute theoretical BER results for
16-QAM over an AWGN channel, for E,/N, values in the vector 2:10.

2 Click the Plot button. The resulting plot shows a solid curve for the
theoretical BER results and plotting markers for the earlier simulation
results.

-0l
-

File Edit Tools ‘Window

EEERi =]

<il
R e e e B e T

* s\mulationDE
theareticall|

-----------------------------------------------------------

Notice that the plotting markers are close to the theoretical curve. It is
relevant that the simulation code used a Gray-coded signal constellation,
unlike the first modulation example of this chapter (in “Modulating a
Random Signal” on page 1-4). The theoretical performance results assume a
Gray-coded signal constellation.

1-28



Simulating a Communication System

To continue exploring BERTool, you can select the Fit check box to fit a curve
to the simulation data, or set Confidence Level to a numerical value to
include confidence intervals in the plot. See also Chapter 4, “BERTool: A Bit
Error Rate Analysis GUI” for more about BERTool.

More About the Simulation Structure

Looking more closely at the simulation function in this example, you might
make a few observations about its structure, and particularly about the loop
marked with the comments

% Simulate until number of errors exceeds maxNumErrs
% or number of bits processed exceeds maxNumBits.

The loop structure means that the simulation processes some data,
accumulates bit errors, and then decides whether to repeat the process with
another set of data. The advantage of this approach is that you do not have to
guess in advance how much data you need to process to obtain an accurate
BER estimate. This is very useful when your series of simulations spans a
large E,/N, range because simulations at higher values of E, /N, require more
data processing to maintain the same level of accuracy in the BER estimate.
Another advantage of this approach is that you avoid memory problems
caused by excessively large data sets.

However, a potential complication from dividing large data sets into a series
of smaller data sets that you process in a loop is that you might need to take
steps to ensure the continuity of computations from one iteration to the
next. For example, continuity is important when the simulation includes
convolutional decoding, convolutional interleaving/deinterleaving, continuous
phase modulation, fading channels, and equalization. To learn more about
how to maintain continuity, see the examples in

® The vitdec reference page

® The viterbisim demonstration function (designed to be used with
BERTool)

® The muxdeintrlv reference page
® The mskdemod reference page

¢ “Fading Channels” on page 10-6

1-29



1 Getting Started

1-30

e “KEqualizing Using a Loop” on page 11-22

e “Equalizing in Continuous Operation Mode” on page 11-29

If you divide your data set into a series of very small data sets, then the large
number of function calls might make the simulation slow. You can use the
Profiler tool in MATLAB to help you make your code faster.

Varying Parameters and Managing a Set of
Simulations

A common task in analyzing a communication system is to vary a parameter,
possibly a parameter other than E /N, and find out how the system responds.
This section addresses the following problem:

Problem Modify the modulation example in “Modulating a Random Signal”
on page 1-4 so that it computes the BER for alphabet sizes (M) of 4, 8, 16, and
32 and for integer values of EbNo between 0 and 7. For each value of M, plot
the BER as a function of EbNo using a logarithmic scale for the vertical axis.

The earlier section (“Modulating a Random Signal” on page 1-4) presented
a model of the system that computes the BER for specific values of M and
EbNo. Therefore, the only remaining task is to vary M and EbNo and collect
multiple error rates. For simplicity, this solution uses the same number of
bits for each value of M and EbNo, unlike the example in “Using BERTool to
Run Simulations” on page 1-23.

Solution of Problem

This solution modifies the code from “Modulating a Random Signal” on page
1-4 by introducing and exploiting a nested loop structure. To view the original
code in an editor window, enter the following command in the MATLAB
Command Window.

edit commdoc_mod

To view a completed M-file for this example, enter edit commdoc_mcurves
in the MATLAB Command Window.



Simulating a Communication System

1. Define the Set of Values for the Parameter. At the beginning of
the script, introduce variables that list all the values of M and EbNo that the
problem requires. Also, preallocate space for error statistics corresponding
to each combination of M and EbNo.

%% Ranges of Variables
Mvec = [4 8 16 32]; % Values of M to consider
EbNovec = [0:7]; % Values of EbNo to consider

%% Preallocate space for results.
number_of_errors = zeros(length(Mvec),length(EbNovec));
bit_error_rate = zeros(length(Mvec),length(EbNovec));

2. Introduce a Loop Structure. After Mvec and EbNovec are defined and
space is preallocated for statistics, all the subsequent commands can go inside
a loop, as illustrated below.

%% Simulation loops
for idxM = 1:1length(Mvec)
for idxEbNo = 1:length(EbNovec)

% OTHER COMMANDS

end % End of loop over EbNo values
end % End of loop over M values

3. Inside the Loop, Parameterize as Appropriate. The M-code
fromcommdoc_gray.m specifies fixed values of M and EbNo, while this problem
requires using a different value for each iteration of the loop. Therefore,
change the definitions of M (within the Setup section) and EbNo (within the
Channel section) as follows.

M = Mvec(idxM); % Size of signal constellation

EbNo = EbNovec(idxEbNo); % In dB
Also, the original M-code returns scalar values for the BER and number of
errors, while it makes sense in this case to save the whole array of error

statistics instead of overwriting the variables in each iteration. Therefore,
replace the BER Computation section with the following.

1-31



1 Getting Started

o°

% BER Computation

% Compare x and z to obtain the number of errors and

% the bit error rate.

[number_of_errors(idxM,idxEbNo),bit error_rate(idxM,idxEbNo)] = ...
biterr(x,z);

Note An earlier step preallocated space for the matrices number_of_errors
and bit _error_rate. While not strictly necessary, this is a better MATLAB
programming habit than expanding the matrices’ size in each iteration. To
learn more, see “Preallocating Arrays” in the MATLAB documentation set.

4. Suppress Earlier Plots. Running multiple iterations would result in a
large number of plots, which this example suppresses for simplicity. Remove
the lines of code that use these functions:stem, title, xlabel, ylabel,
figure, scatterplot, hold, legend, and axis

5. Create BER Plot. The semilogy function in MATLAB creates a plot with
a logarithmic scale in the vertical axis. The following commands, placed just
before the end of the loop over M values, create the desired BER plot curve by
curve during the simulation.

%% Plot a Curve.

markerchoice = '.xo0*';

plotsym = [markerchoice(idxM) '-']; % Plotting style for this curve
semilogy (EbNovec,bit_error_rate(idxM,:),plotsym); % Plot one curve.
drawnow; % Update the plot instead of waiting until the end.

hold on; % Make sure next iteration does not remove this curve.

You might also want to customize the plot at the end by adding this code
after the end of both loops.

%% Complete the plot.

title('Performance of M-QAM for Varying M');

xlabel('EbNo (dB)'); ylabel('BER');

legend('M = 4','M = 8','M = 16','M = 32',...
'Location', 'SouthWest');

6. Run the Entire Script. The script creates a plot like the one below.

1-32



Simulating a Communication System

T ~=lol x|

File Edit Wiew Insert Tools Desktop Window Help N

q Perfarmance of M-QAM for Varying M
10 T T T T T T

1-33



1 Getting Started

Learning More

1-34

You can learn more about the Communications Toolbox from the following
sources.

Online Help

To find online documentation, select Full Product Family Help from the
Help menu in the MATLAB desktop. This launches the Help browser. For
a more detailed explanation of any of the topics covered in this chapter, see
the documentation listed under Communications Toolbox in the left pane
of the Help browser.

Besides this chapter, the online documentation set contains these components:

® A chapter about each of the core areas of functionality of the toolbox (such
as error-control coding, modulation, and equalizers)

* A reference page for each function in the toolbox, indexed alphabetically
and by category

You can also use the online index of examples to find code examples that are
relevant for the tasks you want to do.

Demos

To see more Communications Toolbox examples, select Demos from
the Help menu in the MATLAB desktop. This opens the Help browser
to the demonstration area. Double-click Toolboxes and then select
Communications to list the available demos.

The MathWorks Online

To read the documentation for the Communications Toolbox on the MathWorks
Web site, point your Web browser to

http://www.mathworks.com/access/helpdesk/help/toolbox/comm/

Other resources for the Communications Toolbox are available at

http://www.mathworks.com/products/communications/


http://www.mathworks.com/access/helpdesk/help/toolbox/comm/
http://www.mathworks.com/products/communications/

Signal Sources

Every communication system has one or more signal sources. This chapter
describes how to use the Communications Toolbox to generate random signals,
which are useful for simulating noise, errors, or signal sources. The sections
are as follows.

White Gaussian Noise (p. 2-2) Using wgn to generate white
Gaussian noise

Random Symbols (p. 2-3) Using randsrc to generate random
symbols

Random Integers (p. 2-4) Using randint to generate uniformly

distributed random integers

Random Bit Error Patterns (p. 2-5)  Using randerr to generate random
bit error patterns, as in a model of
channel errors

For more random number generators, see the online reference pages for the
built-in MATLAB functions rand and randn.



2 Signal Sources

White Gaussian Noise

2-2

The wgn function generates random matrices using a white Gaussian noise
distribution. You specify the power of the noise in either dBW (decibels
relative to a watt), dBm, or linear units. You can generate either real or
complex noise.

For example, the command below generates a column vector of length 50
containing real white Gaussian noise whose power is 2 dBW. The function
assumes that the load impedance is 1 ohm.

y1 = wgn(50,1,2);

To generate complex white Gaussian noise whose power is 2 watts, across a
load of 60 ohms, use either of the commands below. The ordering of the string
inputs does not matter.

wgn(50,1,2,60, 'complex', 'linear');
wgn(50,1,2,60, '1linear', 'complex');

y2
y3

To send a signal through an additive white Gaussian noise channel, use the
awgn function. See “AWGN Channel” on page 10-3 for more information.



Random Symbols

Random Symbols

The randsrc function generates random matrices whose entries are chosen
independently from an alphabet that you specify, with a distribution that you
specify. A special case generates bipolar matrices.

For example, the command below generates a 5-by-4 matrix whose entries
are independently chosen and uniformly distributed in the set {1,3,5}. (Your
results might vary because these are random numbers.)

a = randsrc(5,4,[1,3,5])

W = = =W
- = W um

- W ww-—=
W o= WwWwom

If you want 1 to be twice as likely to occur as either 3 or 5, use the command
below to prescribe the skewed distribution. The third input argument has two
rows, one of which indicates the possible values of b and the other indicates
the probability of each value.

b randsrc(5,4,[1,3,5; .5,.25,.25])

b:

W= 2 aw
. WO =W
W2 2 am
—_ ) = = .

2-3



2 Signal Sources

2-4

Random Integers

The randint function generates random integer matrices whose entries are in
a range that you specify. A special case generates random binary matrices.

For example, the command below generates a 5-by-4 matrix containing
random integers between 2 and 10.

¢ = randint(5,4,[2,10])
C =
2 4 4 6
4 5 10 5
9 7 10 8
5 5 2 3
10 3 4 10

If your desired range is [0,10] instead of [2,10], you can use either of the
commands below. They produce different numerical results, but use the same
distribution.

d
e

randint(5,4,[0,10]);
randint(5,4,11);



Random Bit Error Patterns

Random Bit Error Patterns

The randerr function generates matrices whose entries are either 0 or 1.
However, its options are different from those of randint, because randerr
is meant for testing error-control coding. For example, the command below
generates a 5-by-4 binary matrix, where each row contains exactly one 1.

f

randerr(5,4)

o =+ O O0O0o
O o=+ 0O0
O OO OO0

1
1
0
0
1

You might use such a command to perturb a binary code that consists of five
four-bit codewords. Adding the random matrix f to your code matrix (modulo
2) introduces exactly one error into each codeword.

On the other hand, to perturb each codeword by introducing one error with
probability 0.4 and two errors with probability 0.6, use the command below
instead.

% Each row has one '1' with probability 0.4, otherwise two '1's
g = randerr(5,4,[1,2; 0.4,0.6])

g:

[« el Nol
4 00 = =
N =

OO =+ 00

Note The probability matrix that is the third argument of randerr affects
only the number of 1s in each row, not their placement.

2-5



2 Signal Sources

2-6

As another application, you can generate an equiprobable binary 100-element
column vector using any of the commands below. The three commands
produce different numerical outputs, but use the same distribution. The
third input arguments vary according to each function’s particular way of
specifying its behavior.

binarymatrix1 = randsrc(100,1,[0 1]); % Possible values are 0,1.
binarymatrix2 = randint(100,1,2); % Two possible values
binarymatrix3 = randerr(100,1,[0 1;.5 .5]); % No 1s, or one 1



Performance Evaluation

Simulating a communication system often involves analyzing its response to
the noise inherent in real-world components, studying its behavior using
graphical means, and determining whether the resulting performance meets
standards of acceptability. The sections in this chapter are as follows.

Performance Results via Simulation
(p. 3-2)

Performance Results via the
Semianalytic Technique (p. 3-5)

Theoretical Performance Results
(p. 3-9)

Error Rate Plots (p. 3-13)

Eye Diagrams (p. 3-19)
Scatter Plots (p. 3-22)

Selected Bibliography for
Performance Evaluation (p. 3-25)

Computing error statistics using the
Monte Carlo technique

Computing error statistics via the
semianalytic technique

Computing theoretical error
statistics using published formulas

Plotting error statistics and fitting a
curve to empirical error statistics

Plotting eye diagrams
Generating scatter plots

Works containing background
information about performance
evaluation

Because error analysis is often a component of communication system
simulation, other portions of this guide provide additional examples.



3 Performance Evaluation

Performance Results via Simulation

One way to compute the bit error rate or symbol error rate for a communication
system is to simulate the transmission of data messages and compare all
messages before and after transmission. The simulation of the communication
system components using functions in the Communications Toolbox is covered
in other parts of this guide. This section describes how to compare the data
messages that enter and leave the simulation. Another example of computing
performance results via simulation is in “Curve Fitting for Error Rate Plots”
on page 3-13 in the discussion of curve fitting.

Using Simulated Data to Compute Bit and Symbol
Error Rates

The biterr function compares two sets of data and computes the number of
bit errors and the bit error rate. The symerr function compares two sets of
data and computes the number of symbol errors and the symbol error rate. An
error is a discrepancy between corresponding points in the two sets of data.

Of the two sets of data, typically one represents messages entering a
transmitter and the other represents recovered messages leaving a receiver.
You might also compare data entering and leaving other parts of your
communication system, for example, data entering an encoder and data
leaving a decoder.

If your communication system uses several bits to represent one symbol,
counting bit errors is different from counting symbol errors. In either the bit-
or symbol-counting case, the error rate is the number of errors divided by the
total number (of bits or symbols) transmitted.

Note To ensure an accurate error rate, you should typically simulate enough
data to produce at least 100 errors.

If the error rate is very small (for example, 10 or smaller), the semianalytic
technique might compute the result more quickly than a simulation-only
approach. See “Performance Results via the Semianalytic Technique” on page
3-5 for more information on how to use this technique.

3-2



Performance Results via Simulation

Example: Computing Error Rates

The script below uses the symerr function to compute the symbol error rates
for a noisy linear block code. After artificially adding noise to the encoded
message, it compares the resulting noisy code to the original code. Then it
decodes and compares the decoded message to the original one.

m=3; n=2*m-1; k = n-m; % Prepare to use Hamming code.
msg = randint(k*200,1,2); % 200 messages of k bits each
code = encode(msg,n,k, "hamming');

codenoisy = rem(code+(rand(n*200,1)>.95),2); % Add noise.
% Decode and correct some errors.

newmsg = decode(codenoisy,n,k, "hamming');

% Compute and display symbol error rates.
[codenum,coderate] = symerr(code,codenoisy);
[msgnum,msgrate] = symerr(msg,newmsg);

disp(['Error rate in the received code: ',num2str(coderate)])
disp(['Error rate after decoding: ',num2str(msgrate)])

The output is below. The error rate decreases after decoding because the
Hamming decoder corrects some of the errors. Your results might vary
because this example uses random numbers.

Error rate in the received code: 0.054286
Error rate after decoding: 0.03

Comparing Symbol Error Rate and Bit Error Rate

In the example above, the symbol errors and bit errors are the same because
each symbol is a bit. The commands below illustrate the difference between
symbol errors and bit errors in other situations.

a=1[123]"'"; b=1[1414]";
format rat % Display fractions instead of decimals.
[snum,srate] = symerr(a,b)
[bnum,brate] = biterr(a,b)

The output is below.

snum =

3-3



3 Performance Evaluation

srate =

2/3

bnum =

brate =
5/9
bnum is 5 because the second entries differ in two bits and the third entries
differ in three bits. brate is 5/9 because the total number of bits is 9. The

total number of bits is, by definition, the number of entries in a or b times the
maximum number of bits among all entries of a and b.

3-4



Performance Results via the Semianalytic Technique

Performance Results via the Semianalytic Technique

The technique described in “Performance Results via Simulation” on page
3-2 works well for a large variety of communication systems, but can be
prohibitively time-consuming if the system’s error rate is very small (for
example, 108 or smaller). This section describes how to use the semianalytic
technique as an alternative way to compute error rates. For certain types of
systems, the semianalytic technique can produce results much more quickly
than a nonanalytic method that uses only simulated data.

The semianalytic technique uses a combination of simulation and analysis
to determine the error rate of a communication system. The semianalytic
function in the Communications Toolbox helps you implement the
semianalytic technique by performing some of the analysis.

The topics in this section are

* “When to Use the Semianalytic Technique” on page 3-5
® “Procedure for the Semianalytic Technique” on page 3-6

¢ “Example: Using the Semianalytic Technique” on page 3-7

For more background information on the semianalytic technique, refer to [3].

When to Use the Semianalytic Technique

The semianalytic technique works well for certain types of communication
systems, but not for others. The semianalytic technique is applicable if a
system has all of these characteristics:

® Any effects of multipath fading, quantization, and amplifier nonlinearities
must precede the effects of noise in the actual channel being modeled.

® The receiver is perfectly synchronized with the carrier, and timing jitter is
negligible. Because phase noise and timing jitter are slow processes, they
reduce the applicability of the semianalytic technique to a communication
system.

® The noiseless simulation has no errors in the received signal constellation.
Distortions from sources other than noise should be mild enough to keep
each signal point in its correct decision region. If this is not the case,

3-5



3 Performance Evaluation

3-6

the calculated BER is too low. For instance, if the modeled system has a
phase rotation that places the received signal points outside their proper
decision regions, the semianalytic technique is not suitable to predict
system performance.

Furthermore, the semianalytic function assumes that the noise in the
actual channel being modeled is Gaussian. For details on how to adapt
the semianalytic technique for non-Gaussian noise, see the discussion of
generalized exponential distributions in [3].

Procedure for the Semianalytic Technique

The procedure below describes how you would typically implement the
semianalytic technique using the semianalytic function:

Generate a message signal containing at least M symbols, where M is

the alphabet size of the modulation and L is the length of the impulse
response of the channel in symbols. A common approach is to start with an
augmented binary pseudonoise (PN) sequence of total length (log,M)M-. An
augmented PN sequence is a PN sequence with an extra zero appended,
which makes the distribution of ones and zeros equal.

Modulate a carrier with the message signal using baseband modulation.
Supported modulation types are listed on the reference page for
semianalytic. Shape the resultant signal with rectangular pulse shaping,
using the oversampling factor that you will later use to filter the modulated
signal. Store the result of this step as txsig for later use.

Filter the modulated signal with a transmit filter. This filter is often a
square-root raised cosine filter, but you can also use a Butterworth, Bessel,
Chebyshev type 1 or 2, elliptic, or more general FIR or IIR filter. If you use
a square-root raised cosine filter, use it on the nonoversampled modulated
signal and specify the oversampling factor in the filtering function. If you
use another filter type, you can apply it to the rectangularly pulse shaped

signal.

Run the filtered signal through a noiseless channel. This channel can
include multipath fading effects, phase shifts, amplifier nonlinearities,
quantization, and additional filtering, but it must not include noise. Store
the result of this step as rxsig for later use.



Performance Results via the Semianalytic Technique

5 Invoke the semianalytic function using the txsig and rxsig data from
earlier steps. Specify a receive filter as a pair of input arguments, unless
you want to use the function’s default filter. The function filters rxsig
and then determines the error probability of each received signal point by
analytically applying the Gaussian noise distribution to each point. The
function averages the error probabilities over the entire received signal to
determine the overall error probability. If the error probability calculated
in this way is a symbol error probability, the function converts it to a bit
error rate, typically by assuming Gray coding. The function returns the
bit error rate (or, in the case of DQPSK modulation, an upper bound on
the bit error rate).

Example: Using the Semianalytic Technique

The example below illustrates the procedure described above, using 16-QAM
modulation. It also compares the error rates obtained from the semianalytic
technique with the theoretical error rates obtained from published formulas
and computed using the berawgn function. The resulting plot shows that
the error rates obtained using the two methods are nearly identical. The
discrepancies between the theoretical and computed error rates are largely
due to the phase offset in this example’s channel model.

o°

Step 1. Generate message signal of length >= M~L.

M = 16; % Alphabet size of modulation
L =1; % Length of impulse response of channel
msg = [0:M-1 0]; % M-ary message sequence of length > M~L

% Step 2. Modulate the message signal using baseband modulation.
modsig = gammod(msg,M); % Use 16-QAM.

Nsamp = 16;

modsig = rectpulse(modsig,Nsamp); % Use rectangular pulse shaping.

% Step 3. Apply a transmit filter.
txsig = modsig; % No filter in this example

% Step 4. Run txsig through a noiseless channel.

rxsig = txsig*exp(j*pi/180); % Static phase offset of 1 degree
% Step 5. Use the semianalytic function.

% Specify the receive filter as a pair of input arguments.

% In this case, num and den describe an ideal integrator.

num = ones(Nsamp,1)/Nsamp;

3-7



3 Performance Evaluation

den = 1;
EbNo = [0:20]; % Range of Eb/No values under study
ber = semianalytic(txsig,rxsig, ‘qam',M,Nsamp,num,den,EbNo);

% For comparison, calculate theoretical BER.
bertheory = berawgn(EbNo, 'gam',M);

% Plot computed BER and theoretical BER.
figure; semilogy(EbNo,ber,'k*');
hold on; semilogy(EbNo,bertheory,'ro');
title('Semianalytic BER Compared with Theoretical BER');
legend('Semianalytic BER with Phase Offset',...

'Theoretical BER Without Phase Offset', 'Location', 'SouthWest');
hold off;

This example creates a figure like the one below.

T RI=TE
File Edit Wiew Insert Tools Desktop Window Help N
q Semianalytic BER Compared with Theoretical BER
10 T T T T T T T T T
Rk op g
J &
10t | LI 1
# &
1wt b ® _
&
g &
0° b .
ol
o | o .
o't % _
12| + |
10 &
o™
i 4 Semianalytic BER with Phase Offset *
O Theoretical BER Without Phase Offset o]
10'16 1 1 1 1 1 1 | | |
0 2 4 B 8 10 12 14 16 18 20

3-8



Theoretical Performance Results

Theoretical Performance Results

While the biterr function discussed above can help you gather empirical
error statistics, you might also compare those results to theoretical error
statistics. Certain types of communication systems are associated with
closed-form expressions for the bit error rate or a bound on it. The functions
listed in the table below compute the closed-form expressions for some types
of communication systems, where such expressions exist.

Type of Communication System | Function
Uncoded AWGN channel berawgn
Coded AWGN channel bercoding
Uncoded Rayleigh fading channel berfading
Uncoded AWGN channel with bersync
imperfect synchronization

Each function’s reference page lists one or more books containing the
closed-form expressions that the function implements.

Plotting Theoretical Error Rates

The example below uses the bercoding function to compute upper bounds on
bit error rates for convolutional coding with a soft-decision decoder. The data
used for the generator and distance spectrum are from [5] and [2], respectively.

coderate = 1/4; % Code rate

% Create a structure dspec with information about distance spectrum.

dspec.dfree = 10; % Minimum free distance of code

dspec.weight = [1 0 4 0 12 0 32 0 80 0 192 0 448 0 1024 ...
0 2304 0 5120 0]; % Distance spectrum of code

EbNo = 3:0.5:8;

berbound = bercoding(EbNo, 'conv', 'soft',coderate,dspec);

semilogy (EbNo,berbound) % Plot the results.

xlabel('E_b/N_O (dB)'); ylabel('Upper Bound on BER');

title('Theoretical Bound on BER for Convolutional Coding');

grid on;

3-9



3 Performance Evaluation

This example produces the following plot.

[JFiguet ~=lol x|

File Edit Wiew Insert Tools Desktop Window Help

Thearetical Bound on BER for Convolutional Coding

Upper Bound on BER

Comparing Theoretical and Empirical Error Rates

The example below uses the berawgn function to compute symbol error rates
for pulse amplitude modulation (PAM) with a series of E,/N, values. For
comparison, the code simulates 8-PAM with an AWGN channel and computes
empirical symbol error rates. The code also plots the theoretical and empirical
symbol error rates on the same set of axes.

% 1. Compute theoretical error rate using BERAWGN.
M = 8; EbNo = [0:13];

ser = berawgn(EbNo, 'pam',M).*1og2(M);

s Plot theoretical results.

figure; semilogy(EbNo,ser,'r');

xlabel('E_b/N_O (dB)'); ylabel('Symbol Error Rate');
grid onj; drawnow;

\O

o°

2. Compute empirical error rate by simulating.

Set up.

= 10000; % Number of symbols to process

= 1og2(M); % Number of bits per symbol

Convert from EbNo to SNR.

Note: Because No = 2*noiseVariance”2, we must add 3 dB

o°

®° X S

o°

3-10



Theoretical Performance Results

% to get SNR. For details, see Proakis book listed in

% "Selected Bibliography for Performance Evaluation."
snr = EbNo+3+10*10g10(Kk);

ynoisy=zeros(n,length(snr)); % Preallocate to save time.

o°

Main steps in the simulation
randint(n,1,M); % Create message signal.
pammod (x,M); % Modulate.
Send modulated signal through AWGN channel.
Loop over different SNR values.
for jj = 1:length(snr)
ynoisy(:,jj) = awgn(real(y),snr(jj), 'measured');
end
z = pamdemod(ynoisy,M); % Demodulate.

P < X
I n

o°

% Compute symbol error rate from simulation.
[num,rt] = symerr(x,z);

% 3. Plot empirical results, in same figure.

hold on; semilogy(EbNo,rt,'b."');

legend('Theoretical SER', 'Empirical SER');
title('Comparing Theoretical and Empirical Error Rates');
hold off;

This example produces a plot like the one below. Your plot might vary because
the simulation uses random numbers.

3-11



3 Performance Evaluation

=10l x|

Desktop  Window  Help

View Insert Tools

Edit

File:

Erpirical SER

— Thearstical SER [1]

Comparing Theaoretical and Empirical Error Rates

10°

aley Joug |oquiss

14

12

10

E,/M, (4B)

3-12



Error Rate Plots

Error Rate Plots

Error rate plots provide a visual way to examine the performance of a
communication system, and they are often included in publications. This
section mentions some of the tools you can use to create error rate plots,
modify them to suit your needs, and do curve fitting on error rate data. It
also provides an example of curve fitting. For more detailed discussions
about the more general plotting capabilities in MATLAB, see the MATLAB
documentation set.

Creating Error Rate Plots Using semilogy

In many error rate plots, the horizontal axis indicates E,/N, values in dB
and the vertical axis indicates the error rate using a logarithmic (base 10)
scale. To see an example of such a plot, as well as the code that creates it, see
“Comparing Theoretical and Empirical Error Rates” on page 3-10. The part of
that example that creates the plot uses the semilogy function to produce a
logarithmic scale on the vertical axis and a linear scale on the horizontal axis.

Other examples that illustrate the use of semilogy are in these sections:
¢ “Example: Using the Semianalytic Technique” on page 3-7, which also
illustrates
= Plotting two sets of data on one pair of axes
= Adding a title
= Adding a legend
® “Plotting Theoretical Error Rates” on page 3-9, which also illustrates
= Adding axis labels
= Adding grid lines

Curve Fitting for Error Rate Plots

Curve fitting is useful when you have a small or imperfect data set but want
to plot a smooth curve for presentation purposes. The berfit function in the
Communications Toolbox offers curve-fitting capabilities that are well suited
to the situation when the empirical data describes error rates at different
E,/N, values. This function enables you to

3-13



3 Performance Evaluation

3-14

® Customize various relevant aspects of the curve-fitting process, such as the
type of closed-form function (from a list of preset choices) used to generate
the fit.

® Plot empirical data along with a curve that berfit fits to the data.

* Interpolate points on the fitted curve between E,/N, values in your
empirical data set to make the plot smoother looking.

® (Collect relevant information about the fit, such as the numerical values of
points along the fitted curve and the coefficients of the fit expression.

Note The berfit function is intended for curve fitting or interpolation, not¢
extrapolation. Extrapolating BER data beyond an order of magnitude below
the smallest empirical BER value is inherently unreliable.

For a full list of inputs and outputs for berfit, see its reference page.

Example: Curve Fitting for an Error Rate Plot

This example simulates a simple DBPSK (differential binary phase shift
keying) communication system and plots error rate data for a series of E,/N,
values. It uses the berfit function to fit a curve to the somewhat rough set of
empirical error rates. Because the example is long, this discussion presents it
in multiple steps:

e “Setting Up Parameters for the Simulation” on page 3-14

® “Simulating the System Using a Loop” on page 3-15
* “Plotting the Empirical Results and the Fitted Curve” on page 3-17

Setting Up Parameters for the Simulation

The first step in the example sets up the parameters to be used during the
simulation. Parameters include the range of E /N, values to consider and the
minimum number of errors that must occur before the simulation computes
an error rate for that E,/N, value.



Error Rate Plots

Note For most applications, you should base an error rate computation on
a larger number of errors than is used here (for instance, you might change
numerrmin to 100 in the code below). However, this example uses a small
number of errors merely to illustrate how curve fitting can smooth out a
rough data set.

% Set up initial parameters.

siglen = 1000; % Number of bits in each trial

M = 2; % DBPSK is binary.

EbNomin = 0; EbNomax = 10; % EbNo range, in dB

numerrmin = 5; % Compute BER only after 5 errors occur.
EbNovec = EbNomin:1:EbNomax; % Vector of EbNo values

numEbNos = length(EbNovec); % Number of EbNo values

% Preallocate space for certain data.

ber = zeros(1,numEbNos); % BER values

intv = cell(1,numEbNos); % Cell array of confidence intervals

Simulating the System Using a Loop

The next step in the example is to use a for loop to vary the E,/N, value
(denoted by EbNo in the code) and simulate the communication system for
each value. The inner while loop ensures that the simulation continues to use
a given EbNo value until at least the predefined minimum number of errors
has occurred. When the system is very noisy, this requires only one pass
through the while loop, but in other cases, this requires multiple passes.

The communication system simulation uses these toolbox functions:

® randint to generate a random message sequence

e dpskmod to perform DBPSK modulation

® awgn to model a channel with additive white Gaussian noise
e dpskdemod to perform DBPSK demodulation

® biterr to compute the number of errors for a given pass through the while
loop

® berconfint to compute the final error rate and confidence interval for a
given value of EbNo

3-15



3 Performance Evaluation

As the example progresses through the for loop, it collects data for later use
in curve fitting and plotting:

® ber, a vector containing the bit error rates for the series of EbNo values.

® intv, a cell array containing the confidence intervals for the series of EbNo
values. Each entry in intv is a two-element vector that gives the endpoints
of the interval.

% Loop over the vector of EbNo values.
for jj = 1:numEbNos
EbNo = EbNovec(jj);
snr = EbNo; % Because of binary modulation
ntrials = 0; % Number of passes through the while loop below
numerr = 0; % Number of errors for this EbNo value
% Simulate until numerrmin errors occur.
while (numerr < numerrmin)
msg = randint(siglen, 1, M); % Generate message sequence.
txsig = dpskmod(msg,M); % Modulate.
rxsig awgn(txsig, snr, 'measured'); % Add noise.
decodmsg = dpskdemod(rxsig,M); % Demodulate.
newerrs = biterr(msg,decodmsg); % Errors in this trial
numerr = numerr + newerrs; % Total errors for this EbNo value
ntrials = ntrials + 1; % Update trial index.
end
% Error rate and 98% confidence interval for this EbNo value
[ber(jj), intv1l] = berconfint(numerr, (ntrials * siglen),.98);
intv{jj} = intv1l; % Store in cell array for later use.
disp(['EbNo = ' num2str(EbNo) ' dB, ' num2str(numerr)
" errors, BER = ' num2str(ber(jj))])

end

This part of the example displays output in the Command Window as it
progresses through the for loop. Your exact output might be different,
because this example uses random numbers.

EbNo = 0 dB, 182 errors, BER = 0.182
EbNo = 1 dB, 156 errors, BER = 0.156
EbNo = 2 dB, 104 errors, BER = 0.104
EbNo = 3 dB, 66 errors, BER = 0.066
EbNo = 4 dB, 42 errors, BER = 0.042

3-16



Error Rate Plots

EbNo = 5 dB, 27 errors, BER = 0.027
EbNo = 6 dB, 13 errors, BER = 0.0065
EbNo = 7 dB, 7 errors, BER = 0.007
EbNo = 8 dB, 5 errors, BER = 0.00125
EbNo = 9 dB, 5 errors, BER = 0.000625

EbNo = 10 dB, 5 errors, BER = 0.00041667

Plotting the Empirical Results and the Fitted Curve

The final part of this example fits a curve to the BER data collected from the
simulation loop. It also plots error bars using the output from the berconfint
function.

% Use BERFIT to plot the best fitted curve,

% interpolating to get a smooth plot.

fitEbNo = EbNomin:0.25:EbNomax; % Interpolation values
berfit (EbNovec,ber,fitEbNO);

% Also plot confidence intervals.
hold on;
for jj=1:numEbNos
semilogy ([EbNovec(jj) EbNovec(jj)l,intv{jj},'g-+"');
end
hold off;

3-17



3 Performance Evaluation

=10l x|

Desktop  Window  Help

View Insert Tools

Edit

File:

BER vs. Eb/No with Best Curve Fit

S Uy U U SRS S

Erpirical BER
Exp Plus Const Fit

E
I

10
1

10

Eb/Na (dE)

3-18



Eye Diagrams

Eye Diagrams

An eye diagram is a simple and convenient tool for studying the effects

of intersymbol interference and other channel impairments in digital
transmission. To construct an eye diagram, plot the received signal against
time on a fixed-interval axis. At the end of the fixed time interval, wrap
around to the beginning of the time axis. The resulting diagram consists of
many overlapping curves. One way to use an eye diagram is to look for the
place where the “eye” is most widely opened, and use that point as the decision
point when demapping a demodulated signal to recover a digital message.

To produce an eye diagram from a signal, use the eyediagram function. The
signal can have different formats, as the table below indicates.

Representing In-Phase and Quadrature Components of Signal

Signal Format Source of In-Phase | Source of
Components Quadrature

Components

Real matrix with two First column Second column

columns

Complex vector Real part Imaginary part

Real vector Vector contents Quadrature component
is always zero

Example: Eye Diagrams

The code below illustrates the use of the eye diagram for finding the best
decision point. It maps a random digital signal to a 16-QAM waveform, and
then uses a raised cosine filter to simulate a noisy transmission channel.
Several commands manipulate the filtered data to isolate its steady-state
behavior. The eyediagram command produces an eye diagram from the
resulting signal.

% Define the M-ary number and sampling rates.

M= 16; Fd = 1; Fs = 10;
Pd = 100; % Number of points in the calculation

3-19



3 Performance Evaluation

3-20

. Figure 1: Eye Diagram Displayed = |EI|1|
File Edit Wiew Insert Tools Desktop Window Help N

msg d = randint(Pd,1,M); % Random integers in the range [0,M-1]
% Modulate using square QAM.

msg_a = qgammod(msg_d,M);

% Assume the channel is equivalent to a raised cosine filter.
delay = 3; % Delay of the raised cosine filter

rcv = rcosflt(msg a,Fd,Fs,'fir/normal',.5,delay);

% Truncate the output of rcosflt to remove response tails.
N = Fs/Fd;

propdelay = delay .* N + 1; % Propagation delay of filter

rcvl = rcv(propdelay:end-(propdelay-1),:); % Truncated version

% Plot the eye diagram of the resulting signal sampled and
% displayed with no offset.

offset1 = 0;

hi = eyediagram(rcvi,N,1/Fd,offset1);

set(h1, 'Name', 'Eye Diagram Displayed with No Offset');

A vertical line down the center of the diagram crosses the “eye” at its most
widely opened point, as in the image below.

Armnplitude

Armnplitude

Eye Diagram for In-Phase Signal

S A f0 O M b

Time
Eye Diagram for Quadrature Signal




Eye Diagrams

If the eyediagram command uses a different offset value, a vertical line down
the center of the diagram does not cross the eye at the most widely opened
point. The code and image to illustrate this are below.

offset2 = 2;
h2 = eyediagram(rcvi,N,1/Fd,offset2